• Users Online: 78
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2019  |  Volume : 6  |  Issue : 1  |  Page : 18-23

Effect of acute interval walking with blood flow restriction on 4EBP1, ERK, p38, and myostatin of skeletal muscle in inactive men


1 Department of Physical Education, Payame Noor University, Tehran, Iran
2 Department of Sport Physiology, Faculty of Sport Science's, Shahid Chamran University of Ahvaz, Iran
3 Department of Physiology, University of Guilan, Rasht, Iran

Correspondence Address:
Dr. Mehdi Khoubi
Department of Physical Education, Payame Noor University, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/iahs.iahs_4_19

Get Permissions

Background: There is mounting evidence that moderate- to high-intensity exercise training has a key role in skeletal muscle adaption. Low-intensity exercise with Blood flow restriction (BFR) associated with unique effect on muscle hypertrophy. Aims: The aim of this study was to investigate the effect of acute interval walking with BFR on phosphorylation of 4EBP1, P38, ERK, and myostatin (MSTN) of skeletal muscle in inactive men. Materials and Methods: Five healthy inactive men were participated in the study. Training protocol includes five intervals 2-min walking with BFR at 50%–60% maximum heart rate and 1 min at rest. All samples were collected immediately before exercise and 3 h after BFR training. Phosphorylation of 4EBP1, P38, and ERK skeletal muscle was evaluated by Western blotting and MSTN by Elayza test. Dependent t-test was used to analyze the data after subtracting the posttest score from the pretest. Results: However, there was a significant difference between the pre- and post-test for 4EBP1 (P = 0.001), ERK (P = 0.049), and MSTN (P = 0.0009). There was no significant difference between the pre- and post-test of P38 (P = 0/452) (P ≥ 0.05). Conclusion: As a result, acute interval walking with BFR activates mammalian target of rapamycin and mitogen-activated protein kinase pathways signaling in inactive men.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed324    
    Printed2    
    Emailed0    
    PDF Downloaded73    
    Comments [Add]    

Recommend this journal